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A heat engine is a machine which uses the temperature difference between a hot and
a cold reservoir to extract work. Here both reservoirs are quantum systems and a heat
engine is described by a unitary transformation which decreases the average energy
of the bipartite system. On the molecular scale, the ability of implementing a (good)
unitary heat engine is closely connected to the ability of performing logical operations
and classical computing. This is shown by several examples:

(1) The most elementary heat engine is a SWAP-gate acting on 1 hot and 1 cold
two-level systems with different energy gaps.

(2) An optimal unitary heat engine on a pair of 3-level systems can directly implement
OR and NOT gates, as well as copy operations. The ability to implement this heat
engine on each pair of 3-level systems taken from the hot and the cold ensemble
therefore allows universal classical computation.

(3) Optimal heat engines operating on one hot and one cold oscillator mode
with different frequencies are able to calculate polynomials and roots
approximately.

(4) An optimal heat engine acting on 1 hot and n cold 2-level systems with different
level spacings can even solve the NP-complete problem KNAPSACK. Whereas
it is already known that the determination of ground states of interacting many-
particle systems is NP-hard, the optimal heat engine is a thermodynamic problem
which is NP-hard even for n non-interacting spin systems. This result suggests that
there may be complexity-theoretic limitations on the efficiency of molecular heat
engines.
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1. INTRODUCTION

One of the most important consequences of the second law of thermodynamics is
the statement that the heat energy of a bath with uniform temperature cannot be
converted into other forms of energy. Instead, systems with different temperatures
are needed. Machines using temperature differences between two or several heat
reservoirs are called heat engines. Here we consider hypothetical heat engines on
the quantum scale that “extract” energy from a collection of elementary quan-
tum systems with different temperatures. An appealing feature of thermodynamic
machines on the quantum scale is that their relation to information processing de-
vices become more obvious. This is already seen in cooling algorithms which have
been proposed in the context of NMR quantum computing (1), where the analogy
between initialization of bits and cooling is apparent.2 Another Gedankenexper-
iment which shows that a memory of a computing device can play the role of a
thermodynamic reservoir is Szillard’s hypothetical engine (3) which extracts work
from a reservoir with uniform temperature for the cost of writing on an initialized
memory (the ‘cold’ reservoir). From a modern point of view, it is natural to re-
place hot and cold reservoirs with quantum registers. In quantum computing (QC)
(see e.g. (4)) every unitary operation on such a register is interpreted as a logical
gate. Therefore, the QC point of view offers a clear language for analyzing the
complexity of physical processes in the sense of computer science.

By identifying the bits of the quantum register (‘qubits’) with physical two-
level systems one obtains well-defined thermal equilibrium states allowing the
proper definition of ‘hot’ and ‘cold’ qubits. After having represented hot and cold
reservoirs by quantum memories, heat engines which transfer entropy from the
hot to the cold reservoir are quantum operations and it is straightforward to ask
for the complexity of these operations compared to the complexity of computing
steps. This shall be our subject. As the article will show, one can construct many
instances of molecular systems where heat engines are close to logical operations
and computing devices.

First we state more clearly what we mean by “extracting energy” from a
physical system.

Definition 1. (Energy Gain of a Unitary) Given a quantum system with Hilbert
space H with Hamiltonian H , i.e., a self-adjoint operator H : H → H, and the
state be a density operator ρ : H → H. Then we say that a unitary U extracts
energy if and only if

Egain := tr (ρH ) − tr (UρU †H ) > 0 . (1)

2 This analogy is a basic insight for the thermodynamics of computation (2) and Landauer’s principle
saying that the erasure of a bit of information ‘wastes’ the energy ln 2 kT , where k is Boltzmann’s
constant and T the reference temperature of the bath which absorbs the erased information.
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Similar formal settings for energy extraction from molecular systems are
considered in (5−7), whereas the authors in (8) describe cycles in which the energy
levels, i.e., the Hamiltonians, of the quantum systems are changed adiabatically.
Systems where no energy extraction in the sense above is possible are called
passive in (5).

Below we will consider “unitary heat engines” where ρ is the product state
ρ = ρA ⊗ ρB of a bipartite system A, B and ρA and ρB are thermal equilibrium
states with different temperatures TA, TB , respectively.

Definition 1. requires some clarification. First of all one has to ask where the
energy goes. If it is transferred to the environment, the energy extraction will in
general not perform any useful work. However, we assume that it is transferred to
some target system which is not explicitly included into the model. Consider, for
instance a two level system with energy gap E in the excited state |1〉. Transferring
it to its lower level |0〉 releases the energy E . If the process would be implemented
by stimulated emission, for instance, the energy would be absorbed by the stimu-
lating field mode. We will not consider the problem how the released energy could
really perform some useful work, instead, we only demand that the unitary process
U in ineq. (1) lowers the average energy of the system. It should be emphasized
that we only allow unitary transformations here instead of general completely
positive (CP) trace-preserving operations (9), since it is commonly believed that
all processes are unitary provided that a sufficiently large environment is taken
into account. By allowing general CP-operations one would therefore implicitly
allow information transfer between the system and its environment. The fact that
the operation on the whole system involves information processing would then be
obscured by the restriction to a non-informationally complete subsystem.

One may be surprised why the target system, i.e., the energy sink (like the
field mode in the example above), does not explicitly occur in the description.
From the fundamental point of view one would expect a unitary operation on
a system which includes the target. The problem is that the thermodynamics in
such a model depends strongly on the assumptions on the physics of the target
system. If the latter acts not only as an energy sink but also as an entropy sink,
the free energy, i.e., the thermodynamically valuable energy, is not necessarily
increased since the latter is a difference between energy and entropy multiplied by
the Boltzmann constant and a given reference temperature. The latter temperature
determines therefore the gain of usable energy.

In (10) we have considered thermodynamic models consisting of a hot and
a cold system as well as a target system which is driven to a non-equilibrium
state by an energy conserving transformation on the whole tripartite system. The
question, which resources are sufficient to prepare a desired non-equilibrium state
in the target system has extensively been studied in (10) in the context of a quasi-
order of thermodynamic resources. We will show in the appendix that energy
conserving transformations on the tripartite system can approximately lead to
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unitary transformations by restriction to the hot and cold reservoir if the target
system starts in a superposition of many energy eigenstates (as a coherent state in
quantum optics). This should be considered as justification of our model.

In this paper, we do not consider the question of which physical interactions
could implement the desired unitaries. It is clearly far away from present technol-
ogy to implement a unitary heat engine in such a way that the energy consumption
of the implementation is less than the thermodynamic energy yield. The interesting
question is whether this is a matter of principle or not; if there are fundamental
bounds on the energy consumption of the required unitaries one should expect
similar lower bounds for logical operations. At the moment, no fundamental lower
bounds are known on the energy consumption of a computer (11−16); likewise we
do not know of any such bound for heat engines. Nevertheless molecular heat
engines extracting the full amount of thermodynamically available work from a
hot and a cold reservoir could involve logical transformation too complex to be
feasible.

The paper is organized as follows. In Section 2 we introduce the mathemat-
ical model of molecular heat engines and recall some properties of Gibbs states.
Section 3 shows that basic logical operations give examples of simple heat en-
gines. Sections 4 and 5 give examples of molecular heat baths where every good
heat engine must necessarily solve some computation problems. In Section 6 we
introduce heat engines on collections of two-level systems which are interpreted as
quantum bits. In this setting we ask for the number of elementary logical operations
which are necessary for implementing heat engines and show that it increases for
small temperature differences. In Section 7 we show that an optimal heat engine
on 2n hot and 1 cold two-level systems is the inverse of the MAJORITY gate and
argue that this implies lower bounds on the number of elementary quantum gates
required. Section 8 shows that optimal heat engines on two 3-level systems are
logical transformations which are universal for classical computation. In order to
suggest that it is unlikely to find a general algorithm for the implementation of
optimal heat engines Section 9 shows that this would provide an algorithm for
solving an NP-complete problem. The appendix tries to justify the model used in
this article a bit deeper than it is done in the introduction.

2. UNITARY HEAT ENGINES

In order to see that unitary processes on molecular systems with different
temperatures could extract some work we first want to recall thermodynamics of
quantum systems with discrete energy levels. We will also recall another charac-
terization of thermal equilibrium states as the only states which do not allow any
energy extraction even if arbitrarily many copies are available.

First we state the usual definition of thermal equilibrium (“Gibbs state”):
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Definition 2. (Thermal Equilibrium) Let H := ∑
j E j | j〉〈 j | be the Hamiltonian

with energy levels E j and energy eigenstates | j〉. Whenever tr (exp(−H/T )) is
finite, the thermal equilibrium state γT for some T > 0 is given by

γT := e−H/T /tr (e−H/T ) =
∑

j

e−E j /T | j〉〈 j |
/∑

l

e−El/T ,

where we have dropped Boltzmann’s constant. For T = ∞ the density matrix γT

is the maximally mixed state and for T = 0 a uniform mixture over all ground
states, i.e., energy eigenstates with minimal energy.

One can check easily that γT does not allow any energy extraction since the
states with lower energy are more likely than the states with larger energy. Note
that the converse statement is not true, i.e., there are states ρ which differ from all
temperature states γT for T ∈ [0,∞] but for which no unitary lowering the energy
exists. However, Theorem 7 in(5) shows3 that a weaker form of the converse is
true: a state ρ is called ‘completely passive’ if all states ρ⊗n are passive. Then it
is showed that completely passive states are either Gibbs states or some ground
states. In our language we have:

Theorem 1. (Copies of Non-Equilibrium States are Energy Sources) Let ρ be a
state with ρ �= γT for all T ∈ [0,∞] which has the additional property that not
all the probability is concentrated in the ground states. Then there is an n ∈ N
such that an appropriate unitary extracts energy from ρ⊗n.

We give an alternative proof to that one in (5) which makes the geometric origin
of the Gibbs distribution more obvious.

Proof: As already stated in Theorem 2 in (5) U can only minimize tr (UρU †H )
if UρU † commutes with H since the minimum tr (U AU †B) for any two self-
adjoint matrices A, B is always attained if U AU † and B commute (18). We may
therefore assume that ρ commutes with H . Let p0, . . . , pd−1 be the eigenvalues
of ρ corresponding to the energy levels E0, . . . , Ed−1. An eigenbasis of ρ⊗n is
clearly given by all products of n eigenvectors of H . We characterize these basis
states by vectors l ∈ Zd with l = (l1, . . . , ld ) and l̃ = (l̃1, . . . , l̃d ) where l j and l̃ j

are the number of components being in level j . Their energy difference can be
written as an inner product in Rn:

∑
j

(l j − l̃ j )E j = (l − l̃|E) .

3 see also (17) for a generalization to infinite dimensional systems.
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Assume first that p j �= 0 for all j = 1, . . . , d. The logarithm of the probability
ratio of the two states can also be written as an inner product;

∑
j

(l j − l̃ j ) ln p j = (l − l̃| ln p) ,

where ‘ln p’ denotes the vector obtained by taking the logarithm of each entry of p.
Assume that p is not the equilibrium distribution. Then there exists, by definition,
no T > 0, µ ∈ R such that

p j = e−E j /T +µ ∀ j ,

which would be equivalent to

ln p = − 1

T
E + µa ,

if we define a ∈ Rd as the vector having only 1 as entries. Let R be the projection
onto the space a⊥. Then we have

R ln p �= − 1

T
R E

for all T > 0. Since not all levels have the same energy we have R E �= 0. Fur-
thermore, not all entries of ln p are equal because this would be the T = ∞ state.
Elementary geometry shows that there is an x in a⊥ such that

(x | ln p) > 0

and

(x |E) > 0 .

Of course x can be chosen with rational entries and therefore, by multiplication
with the least common multiple of their denominators, also as a vector x ∈ Zd .
With such an x there exist vectors l, l̃ ∈ Nd

0 such that x = l − l̃. By defining

n :=
∑

j

l j ,

which is equal to the sum of all l̃ j according to (l − l̃) ⊥ a, the vectors l, l̃ define
two classes of states such that each state in one class is more likely than each state
in the other class although the latter states have less energy.

Let p have entries zero. Assume that there is some non-zero probability
for a level which is not the ground state. Then there are 3 levels 0, 1, 2 with
E2, E1 > E0 such that p2 = 0, p1 �= 0. Consider a state with label l in O⊗n with
l2 = 1, l0 = n − 1 and l j = 0 for all the other j . Consider furthermore a state with
label l̃ where l1 = n and l̃ j = 0 for all the other indices j . Clearly there is an n
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such that l has more energy than l even though the former has non-zero probability
and the latter probability zero. �

In agreement with thermodynamic intuition, elementary calculation shows that the
composition ρA ⊗ ρB of two equilibrium states ρA, ρB with the same temperature
is the unique equilibrium state of the composed system. This shows that the n fold
copy of an equilibrium state still allows no work extraction. We will clearly expect
that if a state ρ is close to an equilibrium state for some T one will require a large
number of copies of ρ to extract energy. We will later see that this fact implies
that two reservoirs consisting of hot and cold two-level systems, respectively,
require many-qubit operations whenever the temperature difference between the
two reservoirs is small. We give now a precise definition for heat engines and
optimal heat engines:

Definition 3. (Unitary Heat Engine). A heat engine is a unitary transformation
U on a bipartite system with Hamiltonian H := HA ⊗ 1 + 1 ⊗ HB . It is initially
in the state ρ = ρA ⊗ ρB where ρA, ρB are equilibrium states with different tem-
peratures TA, TB , respectively and U extracts energy in the sense of Definition 1.
A unitary U is an optimal heat engine if it maximizes Egain.

In order to run such a heat engine again one has to ensure that system A and
B interact with heat baths with temperatures TA and TB , respectively.

3. SWAP AS THE MOST ELEMENTARY HEAT ENGINE

Classical thermodynamics states that one can in principle use any two systems
with different temperature to extract work in a Carnot cycle (19). For two quantum
systems this is no longer true if we demand unitary heat engines as in Definition
1. As also noted in (7−10) there are additional constraints because unitaries do not
only conserve entropy but also the whole spectrum of a density operator.

If the systems A and B in Definition 3 are two-level systems with equal
energy gap E but different temperatures TA, TB one checks easily that the 4
states 00, 01, 10, 11 of the bipartite system already satisfy p00 > p10, p01 > p11.
Therefore no work extraction is possible since this order coincides with ordering
the states according to their energy: E00 < E01 = E10 < E11. However, we can
construct a heat engine if the energy gaps E A and EB of system A and B satisfy

TA

E A
>

TB

EB
. (2)

One observes easily that the state 10 has more energy than 01 even though the
latter is more likely due to

p10

p01
= e−E A/TA eEB/TB = e(EB/TB−E A/TA) .
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That the latter term should be greater than 1 leads directly to Eq. (2). Then
we can gain energy by implementation of the SWAP-gate, i.e., the permutation
10 ↔ 01. The condition (2) is specific to our molecular heat engine and seems
not to be directly related with the second law; such additional constraints become
less relevant in larger systems.

It is easy to see that the SWAP gate is the only possible unitary operation that
extracts an maximal amount of energy since it is clear that the states 00 and 11
must remain unchanged as they already have both extremal energy and probability.
Only for the two states 10 and 01 the order corresponding to increasing energy is
not consistent with the order corresponding to decreasing probability and we must
exchange the states.

One could easily think of transformations U which are close to the unique
optimal one. It is intuitively obvious that one could find some trade-off relations
between efficiency of the heat engine U and its reliability as a SWAP gate. This
trade-off relation would also hold if convex sums of unitaries (a “random unitary
heat engine”) were applied.

4. APPROXIMATE COMPUTATION OF ROOTS AND POWERS WITH

OSCILLATOR MODES

To show that heat engines may involve quite complex transformations we
have to consider larger systems. A very natural system in physics is a quantum
harmonic oscillator. Its Hilbert space l2(N0) is spanned by the number states
|0〉, |1〉, |2〉, . . . with 0, 1, 2, . . . quanta. Such a system can be a quantum optical
mode or a mechanical oscillator. A state with j quanta of frequency ω has the
energy E( j) = j-hω and the system Hamiltonian is therefore

H := -hω

∞∑
j=0

j | j〉〈 j | .

The bipartite system on which our heat engine will be defined consists of two
modes with different frequencies ωA and ωB . In studying optimal heat engines
on such a bipartite system a problem specific to infinite systems will arise: we
have usually constructed the optimal heat engine U by forming two lists, one
containing the basis states ordered by decreasing probability and the other by
increasing energy. Then U is given by the map |a〉 �→ |b〉 for each corresponding
pair (a, b). Unfortunately the first list may be incomplete even though the other is
complete. Then U is not defined on all states. This situation occurs if one oscillator
is initially in its ground state. For every bijection on the basis states there is always
a bijection extracting more energy. Below we will ignore this problem because
one can easily check that the maps described there can be approximated by unitary
heat engines in an appropriate way.
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First we assume ωA = ωB = ω and TA �= TB = 0. Then the only states with
non-vanishing probability are of the form

|n, 0〉 n ∈ N0 .

To construct the image of the state |n, 0〉 with respect to an optimal heat engine
we recall that the eigenspace of the joint Hamiltonian

H ⊗ 1 + 1 ⊗ H

is degenerate. Since ω is irrelevant in the following we assume -hω = 1 such that
we obtain N0 as the spectrum. The eigenspace Hk corresponding to eigenvalue
k ∈ N0 has dimension k + 1. The optimal heat engine U has to map the state |n, 0〉
into an eigenspace Hk where k is uniquely specified by the following conditions:

dim(⊕l<kHl) < n + 1 ,

and

dim(⊕l≤kHl) ≥ n + 1.

By calculating the dimensions we obtain

n + 1 >

k−1∑
l=0

(l + 1) =
k∑

l=1

l = k2 + k

2
,

and

n + 1 ≤
k∑

l=0

(l + 1) = k2 + 3k + 2

2
.

The conditions are equivalent to

(k2 + k)/2 < n + 1 ≤ (k2 + 3k + 2)/2 .

For large n we have k ≈ √
n. Hence we have a calculator which reduces the

approximative computation of
√

n to an addition of numbers by the following
procedure: apply the heat engine to the state |n, 0〉 and measure ñ, m̃ of the
resulting state. Then ñ + m̃ is an estimation for

√
n.

Two modes can also be used for the calculation of squares. Let ωB < cωA with
some real c � 1. Then choose the temperatures such that TA = cTB . This implies
that all states |n, m〉, |n′, m ′〉 with n + m = n′ + m ′ have equal probability. The
optimal heat engine on these two oscillators can compute approximately (n + m)2

for the input n, m whenever the result is sufficiently smaller than c. This is seen as
follows: for a given pair n, m with n + m = k there is a (k2 + k)/2-dimensional
space for which the eigenvalue of the joint density matrix is greater than the
eigenvalue corresponding to the state |n, m〉. This space must be mapped into the
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span of all states |0, m̃ ′〉 with m̃ ′ ≤ (k2 + k)/2. The subspace

⊕l≤kHl

has to be mapped on the span of all |0, m̃ ′〉 with m̃ ′ ≤ (k2 + 3k + 2)/2. When we
initialize the heat engine to a state |n, m〉 and measure the right quantum number
we obtain therefore some m̃ with

k2 + 3k + 2

2
≥ m ≥ k2 + k

2
.

Hence we obtain m̃ ≈ k2/2.
The schemes above generalize in a straightforward way to the computation

of higher powers and higher roots when more than two oscillators are used. To
calculate kth roots we start with 1 hot and k − 1 zero-temperature oscillators and
to calculate the kth power we start with k hot and 1 cold modes where the hot
modes have c times larger energy gap and the temperatures TA = cTB are also
chosen such that the probability for a state |n1, n2, . . . , nk〉 is only determined by
N := ∑

j n j . Then the optimal heat engine maps all states with N < c onto a state

|0, 0, . . . , N 〉 where N is an approximation for
√

k N .
Now we assume that the ratio e := ωA/ωB is irrational. This ensures that the

Hamiltonian of the composite system is non-degenerate. Up to irrelevant constants,
the energy of a state with n A quanta in mode A and nB quanta in mode B is

E(n A, nB) = en A + nB

with e ∈ R \ Q. We define a bijective function k : N2
0 → N0 such that k(n A, nB)

indicates the number of the pair (n A, nB) when all pairs are put into an increasing
order with respect to E(n A, nB). Now we choose the temperatures 0 �= TA �= TB �=
0 such that

q := E A/TA

EB/TB

is also irrational which holds for instance when TA/TB is rational. It follows that
the density operator ρA ⊗ ρB is also non-degenerate. Up to an additive constant
and a negative factor, the logarithm of the probability for a state |n A〉 ⊗ |nB〉 is
given by

Q(n A, nB) := qn A + nB .

A larger value Q(n A, nB) indicates that the state is less likely. In analogy to the
map k we define a bijective function l : N2

0 → N0 indicating the order of the pairs
(n A, nB) with respect to their values Q(n A, nB). Define a permutation π on N2

0 by

π := k ◦ l−1 .
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Fig. 1. Optimal heat engine of two harmonic oscillators with frequency ratio ωA/ωB = √
2 and

temperature ratio TB/TA = ωB/(
√

3ωA). A point in row n and column m is a basis state with n quanta
in mode A and m in mode B. An arrow (n, m) → (ñ, m̃) indicates that a state with n quanta in mode
A and m in mode B has to be converted into a state with ñ, m̃ quanta, respectively. Points which have
their image or pre-image outside the depicted area obtain no arrow.

This permutation of basis states |n A, nB〉 defines a unitary Uπ by linear extension.4

The density operator of the whole system after having implemented the heat engine
Uπ is

Uπ (ρA ⊗ ρB)U †
π .

The heat engine permutes the eigenvalues such that they are reordered according to
the corresponding energy values. We have computed the corresponding reordering
of states for the values e = √

2 and q = 1/
√

3. The mapping is depicted in Fig. 1,
showing that the heat engine defines a quite complex flow in the discrete two-
dimensional plane. Here complexity is understood in a rather intuitive sense. We
will come to more precise versions of complexity in Sections 6, 7, and 8.

Another interesting case is when one temperature is zero. For TA = 0 only
states |0, nB〉 have non-zero probability. Here the number nB indicates already the
ordering of all states which have non-zero probability. The optimal heat engine
would have to map (0, nB) onto the state (ñ A, ñB) with k(ñ A, ñB) = nB . Hence
the heat engine solves the computation problem of inverting k.

4 Note that the ordering of pairs given by E or Q is a term order in the sense of (20) .
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5. CONVERTING BETWEEN DIFFERENT NUMBER SYSTEMS WITH

N-LEVEL SYSTEMS

The heat engines above could only be used for approximate calculations.
Here we present an example with some finite dimensional systems which perform
an exact computation. Consider two NA-level systems with temperature TA and
two NB-level systems with temperature TB = 0. Let all 4 systems have equidistant
energy levels where the first system of type A has energy gaps E A and the second
NA E A. For the NB-level systems we have energy gaps EB and NB EB and assume
furthermore NB EB < E A. Then the N 2

B states with least energy are given by

|0, 0〉 ⊗ |ñ, m̃〉 ,

where the rightmost vector denotes the states of the two NB-level systems. The
energy is increasing according to an increase of ñNA + m̃. The N 2

A most likely
states are given by

|n, m〉 ⊗ |0, 0〉 ,

and their probability is decreasing with increasing nNA + m. It is easy to check
that the optimal heat engine for this level spacing and this temperature configu-
ration can convert natural numbers from the NA-ary representation to the NB-ary
representation: Initialize the system to the state

|n, m〉 ⊗ |0, 0〉 ,

such that nNA + m < N 2
B − 1. Then we obtain a state

|0, 0〉 ⊗ |ñ, m̃〉
such that ñNB + m̃ = nNA + m, i.e. the representation of the input number in
the NB-system. The scheme generalizes canonically to numbers with more than
2 digits but since the energy gaps grow exponentially this would not be useful to
transform numbers with many digits. Nevertheless the example shows that optimal
heat engines could perform some useful calculations.

6. COMPUTER SCIENTIST’S HEAT ENGINE

Note that a system with two oscillator modes can never be an efficient com-
puter even though it may perform some computations since the energy resource
requirements for representing an n bit input increases exponentially with n instead
of increasing only polynomially. Therefore n qubits are more natural for studying
whether the implementation of heat engines is close to computing. The heat en-
gine with two 2-level systems studied in Section 3 requires different energy gaps.
One can easily conclude from Theorem 1 that heat engines are also possible with
two-level systems with equal energy gap if one has a few of them: the composition
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Fig. 2. Heat engine with 3 two-level systems with equal energy gap.

of 2 two-level systems with temperatures TA �= TB

ρ := γTA ⊗ γTB , where γTA and γTB are equilibrium states,

is not an equilibrium state for any temperature. Therefore, there is an n such that
ρ⊗n allows a unitary heat engine. If the temperatures differ sufficiently this is
already true for n = 2. One can even implement an heat engine with 2 hot and 1
cold system. Assume TA > 2TB . One checks easily that the state 110 is more likely
than 001 even though its energy is twice as much. Hence the process 110 ↔ 001
extracts some energy. Figure 2 shows a quantum circuit implementing this heat
engine.

The required number of systems which are necessary in order to make a heat
engine possible at all increases whenever the temperature quotient gets closer to 1:

Theorem 2. (Complexity of Using Small Temperature Gaps) A heat engine on
n A hot and nB cold qubits with temperatures TA and TB, respectively, and equal
energy gaps, is possible if and only if

1. (for n A ≤ nB)

TA

TB
>

n A

n A − 1

2. (for n A > nB)

TA

TB
>

nB + 1

nB

Furthermore, every heat engine acting on an infinite reservoir of hot and cold
qubit level systems must use operations which connect at least n A hot and nB cold
systems such that the above conditions hold.

Proof: We note that a heat engine can work if and only if a pair of states exist
such that the first has more energy even though it is more likely. Let (lA, lB) denote
the Hamming weights (i.e. the number of symbols 1) of a basis state in the n A + nB

qubit system. The pair (lA, lB) and (kA, kB) satisfies this condition if

(lA − kA) − (lB − kB) > 0
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coldhot coldhot coldhot

Fig. 3. Heat engines with TA/TB > 2 can be implemented with joint operations on 2 hot and 1 cold
qubit (left). For 2 ≥ TA/TB > 3/2 operations on 3 hot and 2 cold qubits are needed (middle), and heat
engines for 3/2 ≥ TA/TB > 4/3 must involve 4 hot and 3 cold qubits (right). Color online

and

(lA − kA)TA − (lB − kB)TB < 0.

Elementary computation shows that this implies

TA

TB
>

lA − kA

lB − kB
> 1 .

Clearly the modulus of the numerator and the denominator are at most n A and nB ,
respectively. The smallest possible quotient which is still greater than 1 is therefore
n A/(n A − 1) or (nB + 1)/nB , respectively. This shows that the conditions (1),
respectively (2) are necessary in order to make a heat engine possible.

For the converse we observe that in case (1) a permutation of the states (n A, 0)
and (0, n A − 1) extracts some amount of energy. In case (2) one extracts energy
by permuting (nB + 1, 0) and (0, nB). �

Figure 3 illustrates how the complexity of heat engines on two-level systems
with equal energy gap increases when the temperature gaps decrease in the sense
that more qubits have to be involved. Note that Fig. 3 furthermore suggests a simple
method to obtain suboptimal heat engines on many particles by independently
applying few-qubit heat engines.
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We would like to know whether the increase of complexity with decreasing
temperature difference occurs also with respect to the number of required gates in
a circuit consisting of simple elementary gates. Therefore we have checked which
heat engines are possible when only a few number gates are allowed and restricted
the attention to TOFFOLI gates (21) since (1) they permute only basis states and
can therefore easily be treated with computer algebra (CA) systems (2) they are
universal for classical computation and they seem therefore sufficiently powerful
to generate good heat engines.5 The restriction to one type of gate simplifies
the complete search for all circuits that can be obtained with k gates. In CA
experiments the energy release of the heat engines obtained by a small number
of TOFFOLI gates was compared to the maximal release. The latter can easily be
computed by reordering the energy levels according to their probabilities.

In the first experiment we consider 3 hot and 2 cold qubits with temperatures
TA = E/ ln 2 and TB = 0. The probabilities for the upper state is hence for a hot
qubit given by 1/3. CA calculations have shown that 3 gates are necessary in order
to have positive energy gain. The circuit Fig. 4, left, acts on only 3 + 1 qubits
and does not make use of the second available cold qubit. With this circuit we
have Egain = 1/27 which is considerably less than the optimal heat engine on 3 + 2
qubits having Egain = 5/27. If we increase the temperature of the cold system such
that TB = E/ ln 5 the circuits with 3 gates do not decrease the average energy any
more and at least 4 gates are needed for a heat engine. One possibility with 4
gates is shown in Fig. 4, right, with Egain = 1/72. For temperature TB = E/ ln 4
there is even no heat engine with 5 TOFFOLI gates. Note that in this situation a
heat engine is still possible by Theorem 2 because TA/TB = ln 4/ ln 2 = 2 > 3/2;
therefore the state exchange |111〉 ⊗ |00〉 ↔ |000〉 ⊗ |11〉 extracts energy. CA
calculations show furthermore that there is indeed a circuit with 31 Toffoli gates
which implements the state exchange above such that all the other states are
mapped onto basis states with the same Hamming weight6 . There are probably
much simpler circuits but the exhaustive search has shown that at least 6 are
required.

7. MAJORITY GATE ON 2N+1 QUBITS

Here we present an example where the complexity of the optimal heat engine
can be compared to the complexity of a circuit computing a well-known boolean
function. Consider 2n two-level systems with temperature TA = ∞ and 1 system
with TB = 0. The basis states of the system are binary words of length 2n + 1.

5 Note, however, that TOFFOLI gates do not generate the full group SN of permutations on N = 2n

basis states of n qubits (see Section 7)
6 Recall that the Hamming weight of a binary word is defined as the number of symbols ‘1’.
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Fig. 4. (left:) The simplest possible heat engine which uses only Toffoli gates. (right:) A heat engine
with 4 gates can extract work from reservoirs with smaller temperature gaps.

The joint Hamiltonian of the system is given by

H := E
∑

b

wgt(b)|b〉〈b| ,

where E is the energy gap of each two-level system and wgt(b) denotes the
Hamming weight of the binary word b. Let the suffix of each of this binary words
indicate the state of system B. Then all binary words with suffix 0 have probability
1/2n and words with suffix 1 never occur. Every optimal heat engine U has to map
the subspace spanned by the former 2n words onto the subspace corresponding
to the 2n smallest eigenvalues of H . It is the space spanned by all words with
Hamming weight at most n. Therefore the inverse of the heat engine, i.e., U−1

computes the boolean function MAJORITY in the sense that the rightmost qubit
in the state

U−1|b〉
is 1 if and only if wgt(b) > n, i.e., the majority of the qubits are in the 1 state.
We would like to estimate the gate complexity of U when it is implemented by
elementary gates. If the set of elementary gates contains with every gate also its
inverse the complexity of U and U−1 coincide. To obtain a lower bound on the
circuit complexity we could therefore use bounds on the circuit complexity of
MAJORITY. In (22) one can find bounds for classical circuits with bounded depth
consisting of AND and OR with arbitrary fan-in. We can give a lower bound on
the circuit depth which holds for arbitrary k-qubit gates. The observable which
measures whether the suffix of a binary word is 1 or 0 is A := 1⊗2n ⊗ σz . This
is obviously a 1-qubit observable since A acts only on the rightmost qubit non-
trivially. The observable U AU † which measures whether the majority of qubits
are 1 is a proper 2n + 1-qubit observable because the logical states of all qubits
are relevant. In (23) we have argued that a circuit of depth l can convert a 1-qubit
observable at most into a kl-qubit observable. Therefore we otain

l ≥ logk(2n + 1)

as lower bound on the depth. This shows after all that the depth must necessarily in-
crease with n even though logarithmic growth would be quite slow. We summarize:
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Theorem 3. (Lower Bound on the Depth) Let U be an optimal heat engine on 2n
two-level systems with temperature TA �= 0 and one two-level system with TB = 0
where all 2n + 1 systems have the same energy gap. Then the implementation of
U with k-qubit gates requires at least a circuit of depth logk(2n + 1).

We would like to know which set of gates would be sufficient to implement U . First
we observe that no ciruit which consists only of NOT and CNOT can implement
U . The action of CNOT permutes the basis states of two qubits according to

|a1〉 ⊗ |a2〉 �→ |a1〉 ⊗ |a1 ⊕ a2〉,
where ⊕ denotes the exclusive or. If one identifies the pair (a1, a2) with a vector
in a two-dimensional space over F2, CNOT is a F2-linear map. By embedding the
action of CNOT into a 2n + 1-dimensional space over F2 it remains linear. The
action of NOT on qubit j corresponds to adding the vector 0 . . . 010 . . . 0 with 1
at position j . Therefore every circuit V with CNOT and NOT gates acts as

V |b〉 = |Ab + c〉 ,

where A is a 2n + 1 × 2n + 1-matrix over F2 and c a vector in F2n+1
2 . If the

majority function would be affine it could up to an additive constant be written as
an inner product over F2, i.e., there existed a vector v and a number w ∈ F2 such
that (v|b) ⊕ w is 1 whenever wgt(b) > n. This is certainly not the case. It is also
easy to see that TOFFOLI gates alone cannot be sufficient to implement U or U−1.
Otherwise U and U−1 would leave all binary words with Hamming weight at most
1 invariant. But the state |0 . . . 01〉 has to be mapped into the space spanned by
words with Hamming weight greater than n. This shows that too restricted sets of
logical operations even though they may be quite powerful (like TOFFOLI gates)
are not sufficient for optimal work extraction.

The insight that the inverse of U would compute MAJORITY gave some
hints on its complexity, however it does not show that the heat engine itself can be
used for computing this boolean function. A thermodynamic machine which can
directly be used as a MAJORITY gate is the reverse of the heat engine, namely
a refrigerator. Assume we have given 2n + 1 two-level systems with the same
temperature T �= 0,∞. Then an optimal refrigerator for the rightmost qubit is
a transformation U which reduces the probability for its upper state as much as
possible. This is certainly the case only when U maps all states |b〉 with wgt(b) > n
to the subspace S spanned by words with suffix 1 and all with wgt(b) ≤ n to the
orthogonal complement of S. Hence the rightmost qubit is the output qubit of a
MAJORITY computation.

We summarize:

Theorem 4. (Relation to Complexity of MAJORITY) Let U be an optimal heat
engine on 2n two-level systems with temperature TA �= 0 and one two-level system
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with TB = 0 where all 2n + 1 systems have the same energy gap. Let the set
of elementary gates be closed under inversion. Then the implementation of U
requires at least as many elementary quantum gates as a computation of the
function MAJORITY of the 2n + 1-qubit input requires which uses no additional
memory space.

8. UNIVERSAL CLASSICAL COMPUTATION ON PAIRS

OF 3-LEVEL SYSTEMS

It is clear that every optimal heat engine on 2 two-level systems leaves the
states 00 and 11 invariant because these are the states with minimal and maximal
energy and with maximal and minimal probability, respectively, at the same time.
Therefore the only non-trivial logical operation is a SWAP-gate. To find more
interesting logical gates in a heat engine on a bipartite system we will therefore
consider two 3-level systems A and B. We assume that system A and B have both
equidistant levels |0〉, |1〉, |2〉 with energy gaps E A and EB , respectively. Up to an
irrelevant factor the energy of a state |n, m〉 with n, m = {0, 1, 2} is given by

E(n, m) = en + m

with e := E A/EB . The inverse logarithm of the probabilities is, up to irrelevant
additive and multiplicative constants, given by

Q(n, m) = qn + m

with q := E ATB/(EB TA). When e and q are not in {1/2, 1, 2} the Hamiltonian
as well as the density matrix of the bipartite system are non-degenerate and
the optimal heat engine implements a unique reordering of basis states. The
following choice of values e, q turns out to be useful: setting 1 < e < 2 we
induce an order on energy values of the pairs n, m which is a refinement of
the degenerate order induced by n + m such that for pairs with equal n + m
preference is given to the pair with smaller m. Explicitly, this is the order
00, 10, 01, 20, 11, 02, 21, 12, 22. With q > 2 the probabilities are in the lexi-
cographic order 00, 01, 02, 10, 11, 12, 20, 21, 22. By comparing these orders one
checks easily that the optimal heat engine implements the map

00 �→ 00

01 �→ 10

02 �→ 01

10 �→ 20

11 �→ 11 (3)

12 �→ 02



Computational Power of Molecular Heat Engines 549

20 �→ 21

21 �→ 12

22 �→ 22 .

Assume we are given a collection of systems of type A and type B. If we
are able to implement the heat engine above on every pair of 3-level systems
consisting of one system of type A and one of type B we can also implement
classical computation on the collection of these 3-level systems. In order to show
this, we chose the encoding such that the logical states 0, 1 are the states |1〉 and
|2〉, respectively and obtain a universal set of logical operations as follows:

1. OR from A, B to B :

A

B B

Apply U once. One checks easily on tabular (3) that the second state is
|2〉 if the input is one of the states |12〉, |21〉, |22〉 and |1〉 if the input is |11〉.

2. WIRE from A to B :

A

B

Use our OR gate by initializing B to |1〉, i.e., the logical 0 state.

3. FANOUT from B to A, B :

B B

A

Initialize system B to |1〉. Apply U 4 times. We get the mapping 12 �→ 20
and 11 �→ 11. The output on A coincides already with the input on B.
The output on B is 1 or 0 according to whether the input on B was 1 or 2.
Hence the information has already been copied to B but with the wrong
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encoding. For the decoding we initialize an additional system A′ to the
state |1〉 and apply U 4 to A′, B. We get 10 �→ 02 and 11 �→ 11. Hence B
agrees with the original input on B.

4. WIRE from B to A :

B

A

Use the FANOUT.

5. NOT from B to B :

B B

Implement the first part of the FANOUT operation which changes the
input state 2 to 0 and leaves 1 invariant. By Initializing an additional
system A′ to |2〉 and apply U once we decode and negate the information
on B simultaneously : 20 �→ 21 and 21 �→ 12.

These operations allow obviously universal computation since every boolean func-
tion can be computed from circuits which consist only of NOR gates. We summa-
rize:

Theorem 5. (Universal Computing with Heat Engines on 3-level Systems) Given
two reservoirs of 3-level systems with temperature TA and TB and energy gap E A

and EB, respectively, such that

2
TA

E A
<

TB

EB

and

2 >
E A

EB
> 1,

then the ability to implement the optimal heat engine on any chosen pair consisting
of one system of type A and one of type B implies the ability to implement universal
classical computation on the 3-level systems.
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9. OPTIMAL HEAT ENGINE AS NP-SOLVER

So far we have only shown some examples of heat engines which perform
relatively ‘simple’ logical operations or computations and heat engines which are
generated by some simple operations. Now we will consider an instance of a heat
engine which had to solve a computationally hard problem in order to be optimal.
Consider a collection of two-level systems with different energy gaps where one of
them has temperature TA and all the others have temperature TB . Then the optimal
heat engine is a computer which solves an NP-complete problem. We recall that
the following instance of KNAPSACK is NP-complete (24):

Definition 4. (KNAPSACK) Given the natural numbers E1, . . . , En, K , V with
K ≤ V . Is there a subset of the values E1, . . . , En such that their sum S satisfies
K ≤ S ≤ V ?

It is commonly believed in computer science that no algorithm can exist that
computes the answer of this question such that the running time increases only
polynomially in the number of bits specifying the input values E1, . . . , En, K , V
(25). Therefore it is remarkable that the following instance of an optimal heat engine
had to solve KNAPSACK. Consider n two-level systems with temperature TA and
energy gaps E1, . . . , En and one hot two-level system with gap E A := V − 1.
Here the energy values can be given with respect to an arbitrary unit (therefore
the physical energy gaps do not necessarily increase with increasing numbers
of E j and K ). Let the temperature of the hot two-level system be given by
TB = (K − 1)TA/E A. Then we have:

Theorem 6. (Optimal Heat Engine Solves NP) Let E A, E1, E2, . . . , En be the
energy gaps of n + 1 two-level systems. Let TA be the temperature of the 0th system
and T of the remaining n. Let the values be such that there is no b ∈ {0, 1}n such
that

n∑
j=1

b j E j = E ATB

TA
.

Let U acting on C2 ⊗ (C2)⊗n be an optimal unitary heat engine for this system.
Let b ∈ {0, 1}n be a possible result obtained by reading out the n rightmost qubits
being in the state

U (|1〉 ⊗ 0 . . . 0〉) .

Then b satisfies

E A >
∑

j

b j E j > E A
TB

TA
(4)

if and only if such a binary word b exists.



552 Janzing

Proof: We only have to show that if there is a string b satisfying (4) it will always
show up as a measured result. Write (b|E) for

∑n
j=1 b j E j . Intuitively, inequality

(4) implies that the state |0〉 ⊗ |b〉 has less energy than |1〉 ⊗ |0〉 but is less likely.
The assumption that there is no b ∈ {0, 1}n such that

(b|E) = E ATB

TA

means that |1〉 ⊗ |0〉 is an eigenvector in a non-degenerate subspace. This
uniqueness of the eigenvalue ensures that the optimal heat engine does not
have ‘too much choice’ on which states the state |1〉 ⊗ |0〉 has to be mapped
to.

First consider the subspace H1 spanned by all vectors |0〉 ⊗ |c〉 with (E |c) <

E ATB/TA. The restriction of the joint density operator ρ to this subspace (note
that this is indeed an invariant subspace of ρ) is left invariant by every optimal U
since the ordering of eigenvalues of ρ and of H coincide here. All these states are
more likely than |1〉 ⊗ |0〉 and have less energy.

Binary words c with (E |c) = E ATB/TA do not exist by assumption. Now
consider the subspace H2 spanned by all |0〉 ⊗ |c〉 with E A > 〈E |c〉 > E ATB/TA.
They have less energy than |1〉 ⊗ |0〉 but they are also less likely, i.e., all eigen-
values of ρ on this subspace are smaller than the eigenvalue p of ρ for the
eigenvector |1〉 ⊗ |0〉. Note that H1 and H2 are spectral subspaces of the to-
tal Hamiltonian, i.e., the only states with energy in the specified intervals are
states |0〉 ⊗ |c〉 with c satisfying the considered inequalities. Hence every op-
timal U has to map |1〉 ⊗ |0〉 into H2 since its eigenvalue p is the largest
one except from the eigenvalues which have already filled the lower spectral
subspace H1. �

Clearly it is essential for the proof that the heat engine is optimal. Efficient
algorithms for suboptimal heat engines are possible. Note that it is is a well-known
phenomenon in the theory of NP-complete optimization problems that a slightly
relaxed demand on the optimality may already allow efficient approximations
(26). To implement a suboptimal heat engine one can implement the few-qubit
heat engines considered in Section 6 involving only some of the qubits in the
reservoir B.

For macroscopic numbers of two-level systems the above complexity theo-
retic limitations will probably become irrelevant because the amount of energy
which is wasted by an efficient suboptimal engine will be negligible compared
to the total energy release. The remarks above should only suggest that there is
in principle a trade-off between complexity and efficiency of heat engines on a
mesoscopic scale even though suboptimal engines with low complexity may be
only be a little bit worse.
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10. CONCLUSIONS

Using several examples of toy heat engines we have shown that there is, on
the molecular scale, a strong coincidence between the task of computation and
the task of energy extraction from heat reservoirs. The ability to extract a maxi-
mal amount of work even requires operations for some systems even solve hard
computational problems. Even though suboptimal heat engines may in general not
require computationally hard operations we have argued that work extraction from
two-level systems with almost equal temperatures require many-qubit operations.
We conclude that heat engines which extract work from reservoirs with similar
temperature require relative complex physical processes.

Clearly, we do not expect that future heat engines on the molecular scale will
be implemented by the type of gates we have considered. However, the ‘Strong
Church Turing Thesis’ (27,28) states that any physical device can be simulated
by a Turing machine in a number of steps polynomial in the resources used by
the computing device. The quantum version of this replaces the classical Turing
machine with a quantum Turing machine (29). Believing in this principle, one
should expect that every process implementing a heat engine which solves an NP-
complete problem has an efficient simulation on a quantum computer. Provided
that one does not believe in efficient quantum algorithms for NP-hard problems,
our results indicate therefore that there are complexity-theoretic limitations to the
efficiency of heat engines on the molecular scale.

APPENDIX: INCLUDING THE TARGET SYSTEM

So far we have considered systems which are informationally closed in the
sense that only unitary operations are available. At the same time they are not
energetically closed since it was exactly our goal to extract energy from the
system. Our above justification for such a model was that we do not want to allow
the energy sink to absorb entropy because this could trivialize the whole problem.
The following paradox arises from this justification: the energy extraction in the
above unitary heat engines is only a probabilistic phenomenon since they decrease
only the average energy of the system. Some energy eigenstates of the system are
mapped onto states with higher energy and some onto lower energy states. This
implies that the energy of the target system is decreased or increased, depending
on the state of the system. Such a probabilistic change of the energy of the target
increases necessarily its entropy even though this was exactly what we wanted to
avoid. Now we show that there are natural situations where this entropy increase
is negligible. Let for simplicity the eigenvalues of the system Hamiltonian Hs be
some integers and the energy spectrum of the target be Z, i.e., its Hamiltonian Ht

on l2(Z) be given by

Ht | j〉 = j | j〉
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for all j ∈ Z. Let U be some unitary heat engine permuting energy eigenstates of
Hs and (Pj ) be a complete set of orthogonal projections on the energy eigenstates
of Hs . Let �( j) be the energy difference between the eigenvalues corresponding
to Pj and to U PjU † and Sk be the shift of l2(Z) defined by

Sk | j〉 = |k + j〉 .

Then we define a unitary operation V on the joint Hilbert space

Hs ⊗ l2(Z) ,

of s and t by

V := (U ⊗ 1)
∑

j

Pj ⊗ S�( j) .

One checks easily that V commutes with the joint Hamiltonian

H := Hs ⊗ 1 + 1 ⊗ Ht .

Furthermore, we choose an initial state vector |ψ〉 ∈ l2(Z) of the energy sink such
that 〈ψ |S�( j)ψ〉 ≈ 1 for all possible energy differences �( j). Then the completely
positive positive map G given by the partial trace (over the target t)

G(ρ) := trt (V (ρ ⊗ |ψ〉〈ψ |)V †)

coincides almost with the unitary operation ρ �→ UρU †. The reason is that a su-
perposition of all the eigenstates in a large interval of energy values is insensitive to
energy increase or decrease and obtains therefore almost no information about the
energy gain. An upper bound on the entropy increase of the target system is given
as follows. The final target state is a mixture of shifted states S�( j)|ψ〉〈ψ |S−�( j)

over all possible energy differences �( j). Given that for this finite set of values
�( j) we have

‖S�( j)|ψ〉〈ψ |S−�( j) − |ψ〉〈ψ | ‖ ≤ δ ,

the entropy of the mixture is smaller than some ε(δ) which converges to zero for
δ → 0 because the von-Neumann entropy is continuous in finite dimensions.

These remarks show that the restriction of the energy conserving unitary V
to s can indeed approximately be the unitary U , when the initial state of the energy
sink is a pure state with large energy spread. If the Hilbert space of the energy
sink is replaced with l2(N0) the construction of unitaries and initial vectors which
yield, by restriction, approximately the unitary U is technically a bit more difficult.
A coherent state in quantum optics which has large photon number expectation
would be a physical example for a state with large energy spread. We conclude
that the unitary heat engine appears as a limit with macroscopic control fields and
is therefore a consistent model.
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The statement that V does not increase the entropy of t by an considerable
amount holds also when the initial state of t is a mixture of energy eigenstates over
a large interval of energy values. One checks easily that the restriction of V to s is
no longer close to a unitary operation. Instead, it destroys superpositions between
all those energy eigenstates with different �( j). Nevertheless it permutes the basis
states in the same way as the unitary heat engine U does which implies that it
implements the same classical computation steps as the unitary model would do.
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